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A DIGITAL MODEL OF THE FLORIDAN AQUIFER,
‘NORTH OF TAMPA, FLORIDA

By

Alton F. Robertson and Michael J. Mallory

ABSTRACT

West-central Florida has had considerable growth in population with
resultant commercial and industrial development in the last two decades.

A method to evaluate the effects of proposed ground-water wi
upon the Florildan aquifer is needed to help ensure orderly a
development of the ground-water resource. A regional ground
of the aquifer was constructed for an 875-square-mile part o
developing area north of Tampa Bay.

The digital model was calibrated by comparing observed
and May 1975) and computed potentiometric heads. A good com
obtained by adjusting leakance and transmissivity. Differen
the computed and measured potentiometric surface were genera
than 3 feet with a maximum error of 15 feet. The calibrated
be used as a predictive tool. For example, the nmodel could
evaluate the regional effects of increased ground-water with
the Floridan aquifer.

The process of calibration of the model resulted in an
derstanding of the functioning of the Flotidan aquifer in th
It was noted that the transmissivity distribution obtaivned £
pumping tests is reasonable, that leakage is more variable t
tests generally indicate, and that direct connection of rive
with the Floridan aquifer cannot be assumed on the scale of
model.
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INTRODUCTION

West-central Florida has had considerable growth in population with
resultant commercial and industrial development in the past two decades.
The coastal area north of Tampa Bay has developed rapidly, and numerous

urban developments now exist.
area has increased accordingly.
of freshwater to the area has been ground water.

The need for freshwater to supply this
Historically, the major source of supply

As the area developed,

well fields, consisting initially of only a few wells, were located near

the coast where water was needed.

As water demand increased, these well

fields could not supply freshwater without inducing saltwater encroach-
ment in the aquifer. Consequently; well fields were located further
inland and--because of demand--each contained a greater number of wells

than did the coastal fields.

Analytical methods to evaluate the effects of pumping from the
various well fields are complex and their application is generally im-

practical on a regional basis.

These methods are also impractical for

evaluating the probable regional effects of proposed well fields. With
the advent of high-speed digital computers and digital-modeling tech-

niques to solve the finite-difference equations for simulating ground-
water flow, 1t became economically feasible to evaluate the effects of

pumping on a regional basis.

For those readers who may prefer to use metric units rather than
English units, the conversion factors for terms used in this report are

as follows:

English
inches (in)

feet (ft)
acres
square miles (miz)

feet ﬁquared per day
(ft°/d)

feet iquared per second

(£t7/s)

million gallons per day
(Mgal/d)

feet per day per foot
[(ft/d)/ft]

Multiply by
25.4

. 3048

<4047
2.59
0.093

0.093
.04381

1.0

Metric
millimeters (mm
meters (m)
hectares (ha)
square kilometers (kmz)

metexrs squared per day

(m”/d)

meters squaxed per
second (m”/s)

cubic meterg pe
second (m”/s)

meters per day per
meter [(m/d)/m]
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Purpose and Scope

The purpose of this report is to describe the development and cali-
bration of a regional digital model of the Floridan aquifer in the Tampa
Bay area. This model can be used to provide regional analyses of the
effects of present and proposed pumping from the Floridan aquifer.

The study, in cooperation with the Southwest Florida Water
‘Management District, began in 1972 and was completed in October 1975.
The study area includes about 875 mi2 (fig. 1). Since the aquifer in
this area is considered infinite, for the purpose of modeling, the model-
ed area was made larger than the study area to minimize the effects of
boundary conditions.

Description of the Area

The area modeled is relatively flat (figs. 2 and 3), altitudes gen-
erally are less than 75 ft. A ridge from Brooksville (north of the
modeled area) southeast to Zephyrhills is higher: these altitudes
exceed 150 ft. Numerous lakes are along this ridge and also in a large
area extending from north of Tampa to Massaryktown. The flat, western
part of the area supports grasslands and cypress swamps. The area has
a subtropical climate and an average rainfall of about 52 in per year.
Deviations from this average are as great as 25 in per year (Tampa Bay
Regional Planning Council, 1974).

Urban development is greatest along the coast. Residential and
commercial developments extend northward from the Pinellas—Pasco County
line nearly to the Pasco-Hernando County line. That part of the area
west of U. S. Highway 19 was developed first, but in the last 5 years
development has extended, particularly inland, north, and northwest of
Tampa. Most of the remaining parts of the area are agricultural.
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Water Use

Public water supply 1s the largest use of water in the area (Healy,
1972). Total withdrawals from municipal well fields have increased from
50 Mgal/d in 1950 to 110 Mgal/d in 1974. Monthly variations in well-
field production are considerable. About 40 percent of the total aunnual

. pumpage is withdrawn in May, June and July.

Little data are available to accurately define industrial and agri-
cultural ground-water withdrawal in the area. Uses that require sizeable
quantities of freshwater are irrigation, dairies, poultry production, and
clitrus processing plants. The combined water-~use estimates for these
uses were about 170 Mgal/d in 1965 and 159 Mgal/d in 1970 (Pride, 1970
and 1973) for Hillsborough, Pasco, and Pinellas Counties. It should be
noted, however, that between 1965 and 1970, industrial pumpage in the
area declined 20 Mgal/d due mainly to the cessation of phosphate mining
in southwest Hillsborough County.

The acreage of land devoted to citrus production can be used to esti-
mate water withdrawals for irrigation. In Hillsborough, Pasco and
Pinellas Counties this area was.about 106,000 acres in 1965, but decreased
to about 80,000 acres in 1973 (Florida Department of Agriculture, 1974).
Estimates of the water requirements for irrigation and percentage of total
acreage irrigated have been made in another similar area in Florida
(Robertson and Mills, 1974). These estimates were applied to the figures
for the total citrus acreage in Pasco, Pinellas, and Hillsborough Counties
to arrive at estimated irrigation requirements of 34 Mgal/d and 26 Mgal/d

' in 1965 and 1974, respectively.

Acknowledgments

The writers gratefully acknowledge assistance rendered by members
of the Southwest Florida Water Management District staff as well as by
the many public officials who provided water-use data. They are also
grateful to the many citizens who permitted access to their wells for
measurements of water levels. '
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HYDROGEOLOGY

The modeled area is underlain by carbonate rocks that form a highly
productive artesian aquifer referred to as the Floridan aquifer (Parker
and others, 1955) (fig. 4). The aquifer is Eoccene to Miocene in age and
is several thousand feet thick. In the northeast part of the area, most
water wells drilled into the aquifer are no more than 1000 ft deep and
near the coast, no more than 300 ft deep. The Floridan aquifer is
characterized by zones where solution openings have formed in the lime-
stone. These zones generally are more productive than the rest of the
aquifer. The base of the Floridan aquifer has not been defined. There
is evidence that very little freshwater circulates below about 1000 ft
below msl.

The top of the limestone forms an irregular surface (fig. 5) that
is overlain by sand and clay deposits as much as 80 ft thick (figs. 6
and 7). Overlying the Floridan aquifer is a clay or sandy clay layer
that exhibits confining bed characteristics. Above this layer is a
water-table aquifer comprised mainly of sand. To obtain data that would
permit improving the estimate of vertical hydraulic conductivity of the
semiconfining clay and to determine its areal thickness, 29 test holes
were drilled to the top of the limestone using a hollow-stemmed auger.
The locations of the test holes, all drilled in 1973, are shown on
figure 7. The clay deposits and surficial sands are generally thicker
along an elongated north-south band near the center of the area.

The numerous sinkholes in the area constitute an important aspect
of the hydrogeologic system. These sinkholes result from the collapse
of the rock and unconsolidated material that overlaid solution cavities
in the limestone. The semiconfining layers are displaced vertically
and the effect is a "short-circuit" of the connection between the water-
table aquifer and the Floridan aquifer than is generally indicated by
determination of the vertical hydraulic conductivity of the semiconfin-
ing layers. -

An understanding of the hydrologic conditions in the area is, of
course, necessary for calibration and use of the digital model. Recharge
. to the Floridan aquifer in the area is by regional ground-water inflow
from upgradient, and vertical leakage through the confining layer. Dis-
charge from the aquifer is by upward vertical leakage, regional ground-
water outflow downgradient, and ground-water withdrawal. The response
of the system to recharge and discharge is a change in aquifer head or
in storage.
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Data to define these hydrologic conditions have been gathered from
about 150 monitor wells that penetrate the Floridan aquifer and 100 wells
that penetrate only the surficial water-table aquifer (Stewart and others,
1971). Streamflow was measured at 34 sites and observations were made
at 54 lake-stage stations (U. S. Geol. Survey, 1974). These data provide
information necessary for comstructing a two-dimensional ground-water
flow model which is described in the following section.

DIGITAL MODEL DESCRIPTION

Theory

The partial differential equation (Trescott and Pinder, 1975) which
describes ground-water flow in two dimensions in a confined aquifer may
be written as: :

a( dh ) oh ) oh ) 5h
ax U o) Tk (Txy ay) Ty \ X ax) Ty (Tyy dy

dh - ‘
S=¢ * W(xy,t) (1

in which:

Txx, Txy, Tyx, Tyy are the components of th~ transmissivity
tensor (th’l)

h is the hydraulic head (L)
S 1s the storage coefficient (dimensionless)
W(x,y,t) 1is the volumetric flux of recharge or with-

draw?l per unit surface area of the aquifer
(Le~b)
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If the Cartesian coordinate axes x and vy are alined with the prin-
ciple components of the transmissivity tensor Txx and Tyy, equation (1)
may be written as:

A om) 3 foan) | ¢ on »
= (Txx 8x) + 3y Tyy 8y> = S St +  W(x,y,t) (2)

‘ Because there is no general analytical solution to equation (2),
numerical methods are employed to arrive at a finite-difference approxi-
mation (Pinder and Bredehoeft, 1968).

The finite-difference equation is solved at each node of the rec-
tangular grid on a digital computer. This results in a set of algebraic
equations that are solved using matrix techniques. Two matrix techniques
were used in this study: the iterative alternating-direction implicit
(ADI) procedure and the strongly implicit procedure (SIP).

The iterative alternating-direction implicit procedure (Peaceman
and Rachford, 1955) was used for the early calibration runs of the model.
At the time these runs were made, ADI was the only numerical method for
solution of the ground-water flow equations available with the Pinder-
Trescott model. In the 1975 version of the Pinder-Trescott model, how-
ever, the strongly implicit procedure (Stone, 1968) was introduced, and
because of the reduced cost of this numerical method over ADI, it was
used in all later runs of the model. )

Assumptions

The model used in this study is areally two-dimensional. The
assumptions used in the model formulation are:

1. The movement of water in the Floridan aquifer is assumed to
occur only in the horizontal plane. In nature, this assumption will be
invalid where appreciable vertical gradients exist. On a regional basis,
however, the vertical gradient is sufficiently small that model results
probably are not significantly affected by this assumptien.

2. The movement of water leaking through the confining bed into
the Floridan aquifer is vertical. This assumption is less likely to be
valid if there are steep gradients in the overlying water—table aquifer
and a relatively high hydraulic conductivity in the confining bed.
Again, however, on a regional basis, model results probably are not
affected by nonvertical flow through the confining bed.

14
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3. Within cach cell of the finite-difference grid, the hydrologic
properties are constant over the area of that cell. This assumption
may result in some degree of error especially in repard to leakage
through the confining layer. For example, the existence of sinkholes
within an areca modeled by a grid cell will result in variations in
vertical hydraulic conductivity across the cell area. However, for
the purpose of regional modeling, the varying values for vertical
hydraulic conductivity can be averaged over a cell.

4. The simulations presented in this investigation are based on a
hydrogeologic framework that is idealized as a single confined aquifer
overlain by a semi-permeable confining layer which, in turn, is overlain
by an unconfined aquifer. Leakage across the bottom of the confined
aquifer is negligible. During simulation, the water levels in the
unconfined aquifer are assumed to be constant. The modeled area was
divided into discrete segments by a grid network. The grid network for
the modeled area.in this report has 49 rows and 47 columns (fig. 8).

The grid spacing ranges from 2,000 ft to 30,000 ft. The close spacings
are in the areas of the major well fields (fig. 9) and the wide spacings
are near the boundary of the modeled area.

5. The potentiometric head$ in the model are simulated at the node
or center of the grid cells. Stress is applied to the grid cells repre-
senting areas of the aquifer in the form of withdrawal or recharge,
which is assumed to be evenly distributed throughout the area corres-
ponding to the grid cell,

15
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Boundary Conditions

The types of boundaries allowed by the model .are constant head or
constant flux boundaries. The boundary conditions for the modeled area
were first simulated as constant head, that is, the potentiometric head
was held constant. Constant head boundaries were selected in order to
simulate the regional flow entering the ground-water system from upgra-
dient and leaving it downgradient, a process which no-flow boundaries
would clearly not simulate. Constant flux values would simulate this
ground-water flow but the volumetric flux rates are not accurately
known. The boundaries are located a sufficient distance from the well
fields so that the effects of well-field pumping do not reach them.
This supposition was confirmed by test runs of the model. The possibil-
ity of using constant-head boundaries to represent rivers and sinkholes
where a high degree of interconnection exists was explored. Those
simulations in which rivers were represented by a constant head gave
unsatisfactory results. A more reasonable simulation was obtained by
adjusting the values of vertical hydraulic conductivity. These results
indicate that the connection between rivers and sinkholes and the
Floridan aquifer, although locally significant, cannot be treated as
direct connections on a regional scale.

Input Data Requirements

The digital model requires the following input data: 1. Head dis-
tribution of the water table (assumed static for the duration of the
simulation); 2. Areal distribution of the leakance coefficient based on
vertical hydraulic conductivity and thickness of the semi-confining bed
between the surficial aquifer and the Floridan aquifer (fig. 10); 3.
Head distribution in the Floridan aquifer at the start of simulation
(fig. 11); 4. Areal distribution of the storage coefficient and trans-
missivity of the Floridan aquifer (fig. 12); 5. Spacing of the grid
network; 6. Locations and discharge rates of the wells; and 7. Duration
of pumping periods and time descretizations used to represent each
period. ~

The starting input values for transmissivity, storage coefficient

and vertical coefficient of leakage were determined from aquifer tests
made in municipal well fields (table 1).
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Table 1. -- Values of hydraulic parameters determined from aquifer
pumping tests.

Vertical coefficient

et pok
Well Transmissivity StoFage of leakance
field (g) coefficient ' /b")
(fe/) ) [(££3/d)/ft]
Eldridge -4 -4
Wilde 33,000 5.0 x 10 2.7 x 10
East Lake -4 -3
- Road 40,000 9.0 x 10 1.1 x 10
Pasco -4 -4
County 53,000 8.0 x 10 2,7 x 10
Cypress . -4 R
Creek 47,000 8.0 x 10 2.7 x 10
Starky 40,000 2.0 x 107 2.7 x 1073
Morris’ 4 -3
Bridge 130,000 3.0 x 10 4.0 x 10

* TFor those redders who prefer to use T in (gal/d)/ft and K'/b' in
(gal/d)/ft3, multiply T presented in (ft2/d) and K'/b" in [(ft3/d)/ft]

by 7.48.
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Data describing aquifer and confining-!ecd properties are entered

by rows; each entry represents the valuc of the parameter at ecach grid
center. These values are determined by superimposing an overlay of the
grid network on a contour map of the parameter to be digitized and
visually assigning the value of the parametcr at the center of cach
grid cell.

MODEL DEVELOPMENT

Model simulations of the aquifer response to an applied stress pro-
vide the potenticmetric head values at each grid cell of the model. The
model is calibrated by comparing computed and field-measured potentio-
metric heads. In the model used in this study, a mass balance 1s computed
at each time interval of a model run. This provides a means to check the
relative magnitudes of accumulated sources and discharges and insures that
the difference between them is acceptably small.

The aquifer model was developed in two phases. Initially, a coarse
grid network composed of 16 rows and 17 columns was selected. Several
boundary-condition configurations were investigated with this version.

It was concluded that constant-head boundaries around the entire grid
gave results that most closely simulated observed water levels. In
addition, the mass balance calculated by the model accounted for inflow
to the modeled area and outflow from the area comparing favorably with
the empirical mass balance for a similar area (Cherry, Stewart, and Mann,
1970). The hydraulic parameters for this model were taken from published
information (Cherry, Stewart, and Mann, 1970). This coarse grid network
required the averaging of initial head values in the confined and surfi-
cial aquifers for the large area represented by each grid cell. Likewise,
the thickness of clay was, of necessity, averaged over a large area.

Simulations made with the coarse grid network model approximated
the observed potentiometric surface but did not provide sufficient detail
to model localized features in many areas. These simulations were used
- to make some areal adjustments. - A larger grid network was then adapted
to the project area. This network allowed closer node spacings and was
composed of 49 rows and 47 columns. The closest of the grid spacings was
2000 ft within the area of the well fields where greater detail was
required. Near the boundary of the network, well outside the project
area, the grid spacing was 30,000 ft.
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The relative effects of changing the values of individual hydrologic
parameters were measured by changing onc parameter and holding the others
constant. The effect of changing that .parameter was then compared with
the effect of changing other parameters. Through this process it was
possible to identify the parameters that caused the greatest variation
in simulated head values. Withdrawal and leakage had the most pronounced
effect on simulated results., Withdrawal rates were reasonably well
defined, particularly in the well fields. Therefore, leakance was the
parameter that was adjusted to achieve simulation results corresponding
well with observed data.

Although changes in the values of transmissivity generally did not
affect the model as much as leakance, changes of transmissivity were
effective in achieving a more accurate simulation of localized variations
in the potentiometric surface (fig. 13).

The potentiometric surface for March 1974 was selected for simula-
tion and final calibration of the model. This period was selected
because the number of observation wells sampled allowed an accurate
definition of the potentiometric surface. The withdrawal rates from
well fields in the area were accurately known. In the spring, the dry
season has become well established, as has increased pumpage to meet an
increased water demand. Because these situations have existed for
several weeks by the beginning of March, and because the Floridan aquifer,
with its high transmissivity, reaches steady-state quickly, the potentio-
metric surface which existed in March can be regarded as quasi-steady
state.

Differences between the simulated potentiometric surface and that
observed in the field are generally less than 3 ft and in all cases,
less than 15 ft (fig. 13). In well-field areas the relatively large
differences were expected because field measurements can change markedly
with variations of pumpage in the field.

The small difference between the observed and the simulated poten-
tiometric surfaces suggested that the model has been successfully cali-
brated. To verify this, the model was used to simulate a different
condition of stress than for which it was calibrated, using the same
values for aquifer parameters that were determined in the calibration
procedure. Verification, for this model, consisted of attempting to .
duplicate the May 1975 potentiometric surface (fig. 14) using the with-
drawal rates reported for May 1975. The similarity between the observed
and simulated potentiometric surfaces are close and this simulation is
considered to constitute a verification of the model.
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The purposce in developing the model is to predict the effects of

changes in rates ot pumping.,  That this could be done is evidenced by
the simulation ol water levels for May 1975. Calibration of the model
was made tor the scason when withdrawals were highest and potentiometric
Tevels in the water-table aquifer as well as in the artesian aquifer
were lowvest.  Predictions for autumn, when water levels have risen,
would require the construction of an additional matrix to reflect the

higher surtace of the water table then prevalent.

SUMMARY AND CONCLUSIONS

Rapid population and economic growth in west-central Florida has
resulted in an accompanying increase in water demand and consequent
water-quality and water-supply problems. A model of the ground-water
system was constructed to aid in the comprehensive planning for utiliza-
tion of the resource.

.2 I
The study arca covers about 875 mi~. In order to minimize boundary
effects, an arca larger than the study area was modeled. A finite-
difference approximation of the ground-water flow equation was solved on

a digital computer using a program developed by Trescott and Pinder (1975).

Aquifer propertics, boundaries, and hydrologic stresses were incorporated
into a [inite-diffcerence grid with cell dimensions that vary from 2,000
ft to 30,000 ft spacing.

The model may be used as a predictive and analytical tool. Calibra-
tion was achiceved by matching observed and calculated potentiometric
heads for March 1974. A good agreement was obtained between observed

and calculated heads by adjusting leakance and transmissivity. As further

verification, the potentiometric surface for May 1975 was reproduced by
the model using the known withdrawal rates for that month. This calcula-
tion yielded good agreement between observed and computed potentiometric

heads. Were the -model to be used to represent other hydrologic conditions,

the water-table head matrix would have to be changed to represent those
conditions.
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The process of calibration of a computer model often can-be of
value in improving the hydrologist's understanding of the functioning
of the system being modecled. In this study it was noted that: (1)
Calibration of the model was achieved with very little manipulation of
the transmissivity distribution obtained from pumping tests. This indi-
cates that the values from these tests reascnably define transmissivity
in the physical system. (2) Leakage in the area is quite variable,
perhaps more variable than is indicated by pumping test results which
integrate the-leakage effects of a large area. (3) The simulation,
assuming a constant head in lakes and rivers, generally gave unsatisfac-
tory results. This indicates that the connection between these features
and the Floridan aquifer, while significant in places, cannot be consid-
ered direct on a regional scale. (4) The mass balance of the calibrated
model agrees well with an empirical mass balance calculated for the simi-
lar but larger Mid-Gulf area (Cherry, Stewart, and Mann, 1970), indicating
that the conceptual model of the area is in good agreement with the real
physical system.
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